Integrated Pest Management (IPM)

Integrated pest management (IPM), also known as integrated pest control (IPC) is a broad-based approach that integrates practices for economic control of pests. IPM aims to suppress pest populations below the economic injury level (EIL). The UN’s Food and Agriculture Organisation definesIntegrated Pest Management as “the careful consideration of all available pest control techniques and subsequent integration of appropriate measures that discourage the development of pest populations and keep pesticides and other interventions to levels that are economically justified and reduce or minimize risks to human health and the environment. Entomologists and ecologists have urged the adoption of IPM pest control since the 1970s. Integrated Pest Management allows for safer pest control.

Globalization and increased mobility often allow increasing numbers of invasive species to cross national borders. IPM poses the least risks while maximizing benefits and reducing costs.


Shortly after World War II, when synthetic insecticides became widely available, entomologists in California developed the concept of “supervised insect control”. Around the same time, entomologists in the US Cotton Belt were advocating a similar approach. Under this scheme, insect control was “supervised” by qualified entomologists and insecticide applications were based on conclusions reached from periodic monitoring of pest and natural-enemy populations. This was viewed as an alternative to calendar-based programs. Supervised control was based on knowledge of the ecology and analysis of projected trends in pest and natural-enemy populations.

Supervised control formed much of the conceptual basis for the “integrated control” that University of California entomologists articulated in the 1950s. Integrated control sought to identify the best mix of chemical and biological controls for a given insect pest. Chemical insecticides were to be used in the manner least disruptive to biological control. The term “integrated” was thus synonymous with “compatible.” Chemical controls were to be applied only after regular monitoring indicated that a pest population had reached a level (the economic threshold) that required treatment to prevent the population from reaching a level (the economic injury level) at which economic losses would exceed the cost of the control measures.

Integrated Pest Management extended the concept of integrated control to all classes of pests and was expanded to include all tactics. Controls such as pesticides were to be applied as in integrated control, but these now had to be compatible with tactics for all classes of pests.


Integrated Pest Management is used in agriculture, horticulture, forestry, human habitations, preventive conservation and general pest control.


An American IPM system is designed around six basic components:

  • Acceptable pest levels—The emphasis is on control, not eradication. Integrated Pest Management holds that wiping out an entire pest population is often impossible, and the attempt can be expensive and unsafe.Integrated Pest Management programmes first work to establish acceptable pest levels, called action thresholds, and apply controls if those thresholds are crossed. These thresholds are pest and site specific, meaning that it may be acceptable at one site to have a weed such as white clover, but not at another site. Allowing a pest population to survive at a reasonable threshold reduces selection pressure. This lowers the rate at which a pest develops resistance to a control, because if almost all pests are killed then those that have resistance will provide the genetic basis of the future population. Retaining a significant number of unresistant specimens dilutes the prevalence of any resistant genes that appear. Similarly, the repeated use of a single class of controls will create pest populations that are more resistant to that class, whereas alternating among classes helps prevent this.
  • Monitoring—Regular observation is critically important. Observation is broken into inspection and identification. Visual inspection, insect and spore traps, and other methods are used to monitor pest levels. Record-keeping is essential, as is a thorough knowledge target pest behavior and reproductive cycles. Since insects are cold-blooded, their physical development is dependent on area temperatures. Many insects have had their development cycles modeled in terms of degree-days. The degree days of an environment determines the optimal time for a specific insect outbreak. Plant pathogens follow similar patterns of response to weather and season.
  • Biological controls—Natural biological processes and materials can provide control, with acceptable environmental impact, and often at lower cost.  Biological insecticides, derived from naturally occurring microorganisms (e.g.Bt), also fall in this category.
  • Responsible use—Synthetic pesticides are used as required and often only at specific times in a pest’s life cycle. Many newer pesticides are derived from plants or naturally occurring substances (e.g.—nicotine, pyrethrum and insect juvenile hormone analogues), but the toxophore or active component may be altered to provide increased biological activity or stability. Applications of pesticides must reach their intended targets. Matching the application technique to the crop, the pest, and the pesticide is critical. The use of low-volume spray equipment reduces overall pesticide use and labor cost.


Integrated Pest Management is the selection and use of pest control actions that will ensure favourable economic, ecological and social consequences and is applicable to most agricultural, public health and amenity pest management situations. The Integrated Pest Management process starts with monitoring, which includes inspection and identification, followed by the establishment of economic injury levels. The economic injury levels set the economic threshold level. That is the point when pest damage (and the benefits of treating the pest) exceed the cost of treatment. This can also be an action threshold level for determining an unacceptable level that is not tied to economic injury. Action thresholds are more common in structural pest management and economic injury levels in classic agricultural pest management. An example of an action threshold is one fly in a hospital operating room is not acceptable, but one fly in a pet kennel would be acceptable. Once a threshold has been crossed by the pest population action steps need to be taken to reduce and control the pest. Integrated pest management employ a variety of actions including cultural controls, including physical barriers, biological controls, including adding and conserving natural predators and enemies to the pest, and finally chemical controls or pesticides.

Risk assessment usually includes four issues: 1) characterization of biological control agents, 2) health risks, 3) environmental risks and 4) efficacy.

Mistaken identification of a pest may result in ineffective actions. Once the pest is known, knowledge of its lifecycle provides the optimal intervention points.

Chemical controls include horticultural oils or the application of insecticides and herbicides. A Green Pest Management IPM program uses pesticides derived from plants, such as botanicals, or other naturally occurring materials.

Pesticides can be classified by their modes of action. Rotating among materials with different modes of action minimizes pest resistance.

Integrated Pest Management in Southeast Asia

The Green Revolution of the 1960s and ’70s introduced sturdier plants that could support the heavier grain loads resulting from intensive fertilizer use. Pesticide imports by 11 Southeast Asian countries grew nearly sevenfold in value between 1990 and 2010, according to FAO statistics, with disastrous results. Rice farmers become accustomed to spraying soon after planting, triggered by signs of the leaf folder moth, which appears early in the growing season. It causes only superficial damage and doesn’t reduce yields. In 1986, Indonesia banned 57 pesticides and completely stopped subsidizing their use. Progress was reversed in the 2000s, when growing production capacity, particularly in China, reduced prices. Rice production in Asia more than doubled. But it left farmers believing more is better—whether it’s seed, fertilizer, or pesticides.

The brown planthopper, Nilaparvata lugens, the farmers’ main target, has become increasingly resistant. Since 2008, outbreaks have devastated rice harvests throughout Asia, but not in the Mekong Delta. Reduced spraying allowed natural predators to neutralize planthoppers in Vietnam. In 2010 and 2011, massive planthopper outbreaks hit 400,000 hectares of Thai rice fields, causing losses of about $64 million. The Thai government is now pushing the “no spray in the first 40 days” approach.

By contrast early spraying kills frogs, spiders, wasps and dragonflies that prey on the later-arriving and dangerous planthopper and produced resistant strains. Planthoppers now require pesticide doses 500 times greater than originally. Overuse indiscriminately kills beneficial insects and decimates bird and amphibian populations. Pesticides are suspected of harming human health and became a common means for rural Asians to commit suicide.

In 2001, scientists challenged 950 Vietnamese farmers to try the Integrated Pest Management. In one plot, each farmer grew rice using their usual amounts of seed and fertilizer, applying pesticide as they chose. In a nearby plot, less seed and fertilizer were used and no pesticides were applied for 40 days after planting. Yields from the experimental plots was as good or better and costs were lower, generating 8% to 10% more net income. The experiment led to the “three reductions, three gains” campaign, claiming that cutting the use of seed, fertilizer and pesticide would boost yield, quality and income. Posters, leaflets, TV commercials and a 2004 radio soap opera that featured a rice farmer who gradually accepted the changes. It didn’t hurt that a 2006 planthopper outbreak hit farmers using insecticides harder than those who didn’t. Mekong Delta farmers cut insecticide spraying from five times per crop cycle to zero to one.

The Plant Protection Center and the International Rice Research Institute (IRRI) have been encouraging farmers to grow flowers, okra and beans on rice paddy banks, instead of stripping vegetation, as was typical. The plants attract bees and a tiny wasp that eats planthopper eggs, while the vegetables diversify farm incomes.

Source: Wikipedia